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Abstract. Darboux transformations for the AKNS/ZS system are constructed in terms of
Grammian-type determinants of vector solutions of the associated Lax pairs with an operator
spectral parameter. A study of the reduction of the Darboux transformation for the nonlinear
Schr̈odinger equations with standard and anomalous dispersion is presented. Two different
families of new solutions for a given seed solution of the nonlinear Schrödinger equation are
given, being one family related to a new vector Lax pair for it. In the first family and associated
to diagonal matrices we present topological solutions, with different asymptotic argument for the
amplitude and nonzero background. For the anomalous dispersion case they represent continuous
deformations of the brightn-soliton solution, which is recovered for zero background. In
particular these solutions contain the combination of multiple homoclinic orbits of the focusing
nonlinear Schr̈odinger equation. Associated with Jordan blocks we find rational deformations
of the just described solutions as well as pure rational solutions. The second family contains
not only the solutions mentioned above but also broader classes of solutions. For example, in
the standard dispersion case, we are able to obtain the dark soliton solutions.

1. Introduction

The nonlinear Schrödinger (NLS) equation is one of the more relevant among the set
of integrable equations in(1 + 1)-dimensions and has been extensively studied since the
seminal papers [14, 15, 1]. Its role in nonlinear optics is central to the study of solitons
in optical fibres [9] and as a partial differential equation is a universal equation describing
the propagation of a quasi-monochromatic wave in a weakly dispersive nonlinear one-
dimensional media. In [6] one can find a very detailed study of the inverse scattering and
the Riemann problem as well as its Hamiltonian structure.

Darboux transformations are one of the main tools in the theory of integrable systems
[11]. Given a spectral problem defined for some potentials the Darboux transformation
acts on the potentials and wavefunctions at the same time giving us solutions to a similar
problem. When applied to the Lax pairs associated to integrable systems one obtains new
solutions from old ones, an auto-Bäcklund transformation. For the Ablowitz–Kaup–Newell–
Segur/Zakharov–Shabat (AKNS/ZS) these transformations have been analysed for example
in [10], see also [11, 13, 5, 4].

Our results regarding the 3-waves resonant interaction equations [7] and the Davey–
Stewartson (DS) equations and its Darboux transformation lead us to study the NLS equation
from this point of view. We remark here that in [12] the Darboux transformations for the
DSI were presented but the reduction to the NLS was just briefly considered. For the
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AKNS/ZS system we consider two adjoint Lax pairs, but now the wavefunctions are not
scalar but vector functions on some complex linear spaceV and its dualV ∗, and the spectral
parameters now are arbitrary operators onV . This allows us construct new AKNS/ZS
spectral problems with new potentials and wavefunctions. The advantages of this new
simple approach are two-fold: first it allows us to obtain a compact way of obtaining
multiple Darboux transformations by Grammian type determinants, secondly the reduction
problem has at least two clear solutions. In fact, we have two different ways of reducing
our Darboux transformations for the AKNS/ZS to the NLS equation in its focusing and
defocusing cases. We must say that these two methods have their roots in the Darboux
transformations for the DSI and DSII we arrive at in [8], respectively.

The first method is close to known results, having the advantage of getting limiting
cases by considering the operator extension of the spectral parameter to be in its Jordan
canonical form and not just a diagonal operator. This gives rational deformation of the
bright soliton solutions of the focusing NLS.

The second method is completely new and is motivated by our previous results in
the DSII equation [8]. In fact the construction allows us to obtain new formulae for the
dark soliton solutions of the defocusing NLS equation. Until now the known Darboux
transformations were unable to reproduce these solutions. Moreover, it contains also the
bright soliton solution of the focusing case. This reduction provides us with a new Lax pair
for the NLS equation.

The layout of the paper is as follows. In section 2 we present our results for the
AKNS/ZS. Next, in section 3, we pay attention to the reduction problem and obtain
theorems 2 and 3: the main results of the paper. Finally, the long section 4 is devoted
to analysis of different examples of the two methods. Motivated by the importance of the
nonzero background [3] we apply our two different approaches to it.

Within the first method we obtain topological deformations (different values for the
argument of the amplitude) of the brightn-soliton solution. The deformation of the bright
1-soliton appears in [11]; however, the important topological aspect of it is missed. We also
give some plots of this solution. As a special case one gets the combination of multiple
homoclinic orbits for the focusing NLS [2]. Rational deformations of these topological
deformations are presented as well, and are also pure rational solutions.

For the second method we present the general form of the dressing of the nonzero
background. We take it as an example by obtaining the darkn-soliton solution of the
defocusing NLS, to the author’s knowledge this is the first time that these solutions have
been obtain by using Darboux transformations. The formulae differ from the standard ones
and are closer to those for the bright case.

2. Darboux transformations for the AKNS/ZS system

The AKNS/ZS equations for the complex functionsp(x, t), q(x, t), that depend on the
complex variablesx, t ∈ C, are the following set of nonlinear partial differential equations:

i∂tp = ∂2
xp + 2p2q

i∂tq = −∂2
x q − 2q2p

(1)
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where ∂t = ∂/∂t and ∂x = ∂/∂x. It is well known [14, 1] that these equations are the
compatibility conditions for the following linear system

∂xg1 − Lg1 − qg2 = 0

∂xg2 + Lg2 + pg1 = 0

i∂tg1 + 2L2g1 + 2qLg2 + pqg1 + ∂xqg2 = 0

i∂tg2 − 2L2g2 − 2pLg1 − pqg2 + ∂xpg1 = 0.

(2)

In the standard formulation of this Lax pair the variableL is a spectral parameter inC
and gi are scalar complex wavefunctions. Nevertheless, if we replaceC by an arbitrary
complex linear spaceV , so that now the functionsgi(x, t), i = 1, 2, take its values inV
and L ∈ L(V ) is an arbitrary linear operator, the compatibility condition for (2) is again
the AKNS/ZS equations (1). Henceforth, we shall assume that our Lax pair is of vector
character and that the spectral parameter is a general operator, not necessarily diagonal.

The adjoint Lax pair is

∂xγ1 − γ13 − pγ2 = 0

∂xγ2 + γ23 + qγ1 = 0

i∂tγ1 − 2γ13
2 − 2pγ23 − pqγ1 + ∂xpγ2 = 0

i∂tγ2 + 2γ23
2 + 2qγ13 + pqγ2 − ∂xqγ1 = 0

(3)

hereγi , i = 1, 2, takes its values inV ∗, the dual ofV , and therefore for eachx, t they
are linear functionals overV , and3 ∈ L(V ) is an arbitrary linear operator. System (3) is
compatible if and only ifp andq solve (1).

With the use of these vector wavefunctionsg and γ we can construct the operator
8(x, t) as follows:

Proposition 1.Given p, q, gi, γi, L and 3 as above there exists locally an operator8

solving the equations

∂x8 = g1 ⊗ γ1 − g2 ⊗ γ2

i∂t8 = 2[∂x(83 − L8) + pg1 ⊗ γ2 − qg2 ⊗ γ1]
(4)

such that

L8 + 83 = g1 ⊗ γ1 + g2 ⊗ γ2. (5)

Proof. Using (2) and (3) one finds that

i∂t (g1 ⊗ γ1 − g2 ⊗ γ2) = 2∂x((g1 ⊗ γ1 − g2 ⊗ γ2)3 − L(g1 ⊗ γ1 − g2 ⊗ γ2)

+pg1 ⊗ γ2 − qg2 ⊗ γ1)

and therefore there exists a local potential8 solving (4). Now, with the use of (2), (3) and
(4) we immediately check that

∂x(L8 + 83 − g1 ⊗ γ1 − g2 ⊗ γ2) = 0

∂t (L8 + 83 − g1 ⊗ γ1 − g2 ⊗ γ2) = 0

and hence if the initial condition80 = 8(x0, t0), that determines a unique solution of (4),
is such that(L8 + 83 − g1 ⊗ γ1 − g2 ⊗ γ2)|x0,t0 = 0 (5) follows. �

We shall suppose that8 is an invertible operator, and that it is8−1 which plays the
role of a Darboux operator.
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Proposition 2.The objects

p̂ = p + 2〈γ1, 8
−1g2〉

q̂ = q + 2〈γ2, 8
−1g1〉

ĝi = 8−1gi

γ̂i = γi8
−1

L̂ = −3

3̂ = −L

satisfy (2) and (3) if the objectsp, q, gi, γi, L, 3 do.

Proof. Introducegi = 8ĝi and γi = γ̂i8 in (2) and (3) respectively. Then use the
differential equations (4) for8 and (5) to obtain the desired result. �

From this proposition it follows that

Theorem 1.Let p andq be a solution of (1) andgi, γi solutions of (2) and (3) respectively,
take an invertible operator8 as in proposition 1, and define

p̂ = p + 2〈γ1, 8
−1g2〉

q̂ = q + 2〈γ2, 8
−1g1〉.

Then p̂ and q̂ are new solutions of (1). Moreover, the following relation holds:

p̂q̂ = pq + ∂2
x ln det8. (6)

Proof. From proposition 2 it follows that̂p and q̂ are necessarily solutions of (1).
To prove the relation (6) we proceed as follows. First we observe that from proposition 1

one has the relations

Tr(L + 3) = 〈γ̂1, g1〉 + 〈γ̂2, g2〉
∂x ln det8 = 〈γ̂1, g1〉 − 〈γ̂2, g2〉.

Where in the first relation we have use (5) and in the second (4) together with the identity
Tr(∂x88−1) = ∂x ln det8. Now, taking thex-derivative we find out

0 = ∂x〈γ̂1, g1〉 + ∂x〈γ̂2, g2〉
∂2
x ln det8 = ∂x〈γ̂1, g1〉 − ∂x〈γ̂2, g2〉.

We must remark that these two equations follow from (4), see the proof of proposition 1.
So, we deduce

∂2
x ln det8 = 2∂x〈γ̂1, g1〉 = −2∂x〈γ̂2, g2〉.

We concentrate on the first relation. We evaluate

2∂x〈γ̂1, g1〉 = 2p̂〈γ̂2, g1〉 + 2q〈γ̂1, g2〉 = p̂(q̂ − q) + q(p̂ − p) = p̂q̂ − pq

were we have used (2) and (3) for both unhated and hated variables and the definitions of
proposition 2. From this equation follows the desired result. �

We must remark that whenL and3 are diagonaln × n matrices these solutions might
correspond to an iterated scalar Darboux transformation.
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3. Darboux transformations for the NLS equations

When x, t ∈ R are real variables andq = εp∗, henceforth in the paperε = ±1, with p∗

the complex conjugate ofp, the AKNS/ZS system (1) reduces to

i∂tp = ∂2
xp + 2ε|p|2p (7)

which is the well known NLS equation in its focusing or anomalous dispersion (ε = 1) and
defocusing or standard dispersion (ε = −1) cases.

The natural question that arises here is whether or not it is possible to reduce the
Darboux transformations of section 2 to this equation. The surprising fact is that there are
at least two different ways to give a positive answer to this question. We shall explain these
two different constructions.

One of them needsV to be pre-Hilbert (i.e. with inner product), and so a map
† : V → V ∗ is defined, and is based on the following observation.

Proposition 3.Given solutionsg1 and g2 of (2) and a linear operatorH ∈ L(V ) with the
interlacing propertyL†H = H3 the functionalsγ1 = g

†
2H and γ2 = εg

†
2H , are solutions

of (3) if and only if q = εp∗.

Proof. From (2) one deduces for the definedγ ’s

∂xγ1 − γ13 − εq∗γ2 = 0

∂xγ2 + γ23 + εp∗γ1 = 0

i∂tγ1 − 2γ13
2 − 2εq∗γ23 − p∗q∗γ1 − ε∂xq

∗γ2 = 0

i∂tγ2 + 2γ23
2 + 2εp∗γ13 + pqγ2 − ε∂xp

∗γ1 = 0

that when compared with (3) gives the result stated. �

How is this proposition of any help in our aim? First, if a solutionp to the NLS
equation (7) is given, we also have a solutionp, q = εp∗ of (1). Then, we perform a
Darboux transformation to obtain a new solutionp̂, q̂ of (1). To do that we need solutions
g1, g2 of (2) and solutionsγ1, γ2 of (3), these last two we take as prescribed in proposition 3.
Then, the Darboux operator8 is given by

∂x8 = (g1 ⊗ g
†
1 − εg2 ⊗ g

†
2)H

i∂t8 = 2[∂x(83 − L8) + ε(pg1 ⊗ g
†
2 − p∗g2 ⊗ g

†
1)H ]

L8 + 83 = (g1 ⊗ g
†
1 + εg2 ⊗ g

†
2)H

and from the two first it follows thatH †8 − 8†H is a constant operator not depending on
x or t , so that if the initial conditions are chosen in an appropriate way:H †8 = 8†H .
With such a8 we construct our Darboux transformation, the transformed wavefunctions
are ĝ1 = 8−1g1, ĝ2 = 8−1g2 and

γ̂1 = γ18
−1 = g

†
1H8−1 = g

†
1(8

†)−1H † = ĝ
†
1Ĥ

γ̂2 = γ28
−1 = εg

†
2H8−1 = εg

†
2(8

†)−1H † = εĝ
†
2Ĥ

hereĤ = H †, these last two solve (3) then proposition 3 shows thatq̂ = εp̂∗ and the NLS
reduction is preserved by the Darboux transformation.

So the first method is
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Theorem 2.Given a solutionp of the NLS equation (7) take functionsg1 and g2, with
values in a pre-Hilbert spaceV , solving the following linear system

∂xg1 − Lg1 − εp∗g2 = 0

∂xg2 + Lg2 + pg1 = 0

i∂tg1 + 2L2g1 + 2εp∗Lg2 + ε|p|2g1 + ε∂xp
∗g2 = 0

i∂tg2 − 2L2g2 − 2pLg1 − ε|p|2g2 + ∂xpg1 = 0

(8)

whereL ∈ L(V ) is a linear operator overV . For operatorsH and3 such that

L†H − H3 = 0

find an invertible operator8 with

∂x8 = (g1 ⊗ g
†
1 − εg2 ⊗ g

†
2)H

i∂t8 = 2[∂x(83 − L8) + ε(pg1 ⊗ g
†
2 − p∗g2 ⊗ g

†
1)H ]

L8 + 83 = (g1 ⊗ g
†
1 + εg2 ⊗ g

†
2)H

H †8 = 8†H

where the first two are compatible equations and the second two restrict the possible initial
conditions. Then,

p̂ = p + 〈g†
1, H8−1g2〉

solves (7) and the following relation holds

|p̂|2 = |p|2 + ε∂2
x ln det8.

If for a seed solution p we find L, 3, H, gi and 8 as prescribed in
the above theorem and thus a new solution̂p, one easily realizes that
MLM−1, (M†)−13M†, (M†)−1HM†, Mgi and M8M† with M ∈ GL(V ), satisfies all the
requirements of the theorem and moreover gives the same dressed solutionp̂ as with the
previous data. Hence, there is an action of GL(V ) that leaves invariant the Darboux trans-
formation. This fact allows us to pickL in a canonical form, for example if dimV < ∞
we can chooseL in its Jordan canonical form. In the next section we shall analyse in more
detail some solutions associated with these Jordan canonical forms forL.

For the second method we need to introduce a special class of linear operatorsPε on
V ,

Pε = {J ∈ L(V ) : JJ ∗ + ε = 0}.
Our construction stems from the following observation.

Proposition 4.(i) Given solutionsg1 andg2 of (2) andI ∈ Pε with the interlacing property
IL∗ + LI = 0 then

g1 = Ig∗
2

imply q = εp∗.
(ii) Given solutions γ1 and γ2 of (3) and J ∈ Pε with the interlacing property

3∗J + J3 = 0 then

γ2 = γ ∗
1 J

imply q = εp∗.
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Proof. We shall prove (i), the proof of (ii) goes analogously. Because the particular relation
amongg1 andg2 (2) can be written as{

I∂xg
∗
2 − LIg∗

2 + εqIg∗
1 = 0

∂xg2 + Lg2 + pg1 = 0{
I i∂tg

∗
2 + 2L2Ig∗

2 − ε2qLIg∗
1 + pqIg∗

2 − ε∂xqIg∗
1 = 0

i∂tg2 − 2L2g2 − 2pLg1 − pqg2 + ∂xpg1 = 0.

Using the interlacing property betweenL and I and comparing the equations in each set
we see that we needq = εp∗. �

Now, we proceed as in the previous method. We take a solutionp of (7), thusp, q = εp∗

solves (1), and we choose wavefunctions as in proposition 4 in order to perform a Darboux
transformation. The Darboux operator8 is characterized by

∂x8 = Ig∗
2 ⊗ γ1 − g2 ⊗ γ ∗

1 J

i∂t8 = 2[∂x(83 − L8) + pIg∗
2 ⊗ γ ∗

1 J − εp∗g2 ⊗ γ1]

L8 + 83 = Ig∗
2 ⊗ γ1 + g2 ⊗ γ ∗

1 J.

But, the first two equations imply that∂x(I
∗8+8∗J ) = 0 and∂t (I

∗8+8∗J ) = 0, so that
we can choose the initial condition such that

I ∗8 + 8∗J = 0.

With such a Darboux operator we look to the transformed wavefunctionsĝi andγ̂i , i = 1, 2:

ĝ1 = 8−1g1 = 8−1Ig∗
2 = −J ∗(8−1)∗g∗

2 = Î ĝ∗
2

γ̂2 = γ28
−1 = γ ∗

1 J8−1 = −γ ∗
1 (8−1)∗I ∗ = γ̂ ∗

1 Ĵ .

Here Î = −J ∗, Ĵ = −I ∗ ∈ Pε. Now, proposition 4 implies that̂q = εp̂∗, and therefore the
Darboux transformation preserves the NLS reduction again.

The above results can be condensed in the following.

Theorem 3.Given a solutionp of (7) and linear operatorsL, 3, I, J ∈ L(V ) on a complex
linear space such that

II ∗ + ε = 0 JJ ∗ + ε = 0

LI + IL∗ = 0 3∗J + J3 = 0

choose a vector wavefunctiong with values inV solving the Lax pair

∂xg + Lg + pIg∗ = 0

i∂tg − 2L2g − 2pLIg∗ − ε|p|2g − ∂xpIg∗ = 0
(9)

and a functionγ taking values inV ∗ solving the adjoint Lax pair

∂xγ − γ3 − pγ ∗J = 0

i∂tγ − 2γ32 − 2pγ ∗J3 − ε|p|2γ − ∂xpγ ∗J = 0.
(10)

Find an invertible operator8 solving the compatible equations

∂x8 = Ig∗ ⊗ γ − g ⊗ γ ∗J
i∂t8 = 2[∂x(83 − L8) + pIg∗ ⊗ γ ∗J − εp∗g ⊗ γ ]

with initial conditions such that

L8 + 83 = Ig∗ ⊗ γ + g ⊗ γ ∗J
I ∗8 + 8∗J = 0.
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Then, the function

p̂ = p + 2〈γ, 8−1g〉
solves the NLS equation (7). Moreover,

|p̂|2 = |p|2 + ε∂2
x ln det8.

Observe that in the focusing caseε = 1 there is no operator inP1 when V = C. At
least we need a two-dimensional space. We see that the linear systems (9) and (10) can be
considered as new vector Lax pair for the NLS equation. The standard Lax pair for it is
that given in theorem 2.

For M, N ∈ GL(V ) the transformation

L, I, g, 3, J, γ, 8 → MLM−1, MI (M∗)−1, Mg, N−13N, (N∗)−1JN, γN, M8N

gives from data satisfying the conditions in the above theorem new data satisfying the same
conditions. Moreover, the associated solutionp̂ is not modified by the transformation.
Therefore, we have a double action of GL(V ), right and left actions (GL(V )L × GL(V )R)
for which the Darboux transformation is invariant. This symmetry allows us to pickL and
3 in a canonical form, for example in the finite-dimensional case in its Jordan canonical
forms.

4. Examples

This section is devoted to the analysis of some examples of the solutions of the NLS
equation (7) obtained by applying theorems 2 and 3. As a seed solution of (7) we pick the
‘constant’ background

p(x, t) = ρ exp(−2iερ2t) (11)

with ρ ∈ R+ a non-negative real number. We recall the relevance of solutions with nonzero
finite asymptotic values of the NLS equation [3]. We divide the section into two subsections,
first we analyse the solutions given by the method stated in theorem 2, then we study the
solutions associated with theorem 3.

4.1. First method

We apply theorem 2 to the seed solution given in (11). First we need to fix the algebraic
data given by the linear operatorsL, 3 andH .

The operatorH is related to the initial value80 of 8, we shall chooseH = id as the
identity which implies that8 is a Hermitian operator,8 = 8†. (Another possible choice
is to fix 80 as the identity and thenH is where the parameters of the solution appear.)

With this choice, H = id, we have3 = L†. Then, the equations defining the
wavefunctionsg1 andg2 are

∂xg1 − Lg1 − ερ exp(2iερ2t)g2 = 0

∂xg2 + Lg2 + ρ exp(−2iερ2t)g1 = 0

i∂tg1 + 2L2g1 + 2ερ exp(2iερ2t)Lg2 + ερ2g1 = 0

i∂tg2 − 2L2g2 − 2ρ exp(−2iερ2t)Lg1 − ερ2g2 = 0.

The solution to this linear system is given by

g1(x, t) = exp(iερ2t)h1(x, t) g2(x, t) = exp(−iερ2t)h2(x, t)
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where (
h1

h2

)
= exp(S)

(
g1(0)

g2(0)

)
with S := HL an operator inV ⊕ V , where the operatorsH andL can be written in block
form as

H(x, t) := diag(x + 2iLt, x + 2iLt)

L :=
(

L ερ

−ρ −L

)
.

Observe thatM := L2 = diag(L2 − ερ2, L2 − ερ2) so that

exp(S) =
∑
n>0

H2n

(2n)!
Mn +

∑
n>0

H2n+1

(2n + 1)!
MnL.

In the finite-dimensional case, without lack of generality, we can takeL to be in its
Jordan form:L = J`1 ⊕ . . . ⊕ J`m

, where j̀ are the eigenvalues ofL andJ
j̀

is a Jordan
block corresponding to that eigenvalue. One can show that the operatorL2 − ερ2 has a
square root if̀ 2

j − ερ2 6= 0, for all j , if so the operator is invertible as well. This will be
called the generic case, that we shall analyse with certain detail. For the non-generic case
one has rational solutions of NLS and we shall present here only the simplest case.

4.1.1. Generic case. If the operatorL2 − ερ2 has a square root, sayK, such that

K2 = L2 − ερ2

we introduce the operators

R := ε(K − L)/ρ = −ρ(K + L)−1

9(x, t) := exp(K(x + 2iLt)).

In terms of these quantities the general solution can be written as

h1(x, t) = 9(x, t)−1f1(x, t)

h2(x, t) = 9(x, t)−1f2(x, t)

where

f1(x, t) := G(x, t) + Rv2

f2(x, t) := RG(x, t) + εv2

with

G(x, t) := exp(2K(x + 2iLt))v1

being v1, v2 ∈ V arbitrary vectors related to the initial conditions for the wavefunctions.
Namely,g1(0) = v1 + Rv2 andg2(0) = Rv1 + εv2.

Now, we introduce

ϕ = 989†

and the new solution of the NLS equation is

p = exp(−2iερ2t)(ρ + 〈f †
1 , ϕ−1f2〉).

Moreover,∂2
x ln detϕ = ∂2

x ln det8.
All these results can be gathered together in the following.
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Proposition 5.Let ρ be a non-negative real number andL ∈ L(V ) a linear operator in a
complex linear spaceV such that the operatorL2 − ερ2 has a square root, sayK:

K2 = L2 − ερ2.

Let R = ε(K − L)/ρ and

f1(x, t) := G(x, t) + Rv2

f2(x, t) := RG(x, t) + εv2

with

G(x, t) = exp(2K(x + 2iLt))v1

and v1, v2 ∈ V . Choose an invertible operatorϕ subject to the following compatible
equations

∂xϕ = Kϕ + ϕK† + f1 ⊗ f
†
1 − εf2 ⊗ f

†
2

i∂tϕ = (∂xϕ − Kϕ)L† − L(∂xϕ − ϕK†) + ρ(εf1 ⊗ f
†
2 − f2 ⊗ f

†
1 )

Lϕ + ϕL† = f1 ⊗ f
†
1 + εf2 ⊗ f

†
2 .

Then we can construct solutions of (7) as follows

p(x, t) = exp(−2iερ2t)(ρ + 〈f †
1 , ϕ−1f2〉)

for which |p|2 = ρ2 + ε∂2
x ln detϕ holds.

In the finite-dimensional case one takesV = Cn, then by a change of basis we could
write the matrix corresponding toL in its Jordan canonical form. We first suppose that
L = diag(`1, . . . , `n) is diagonal with eigenvalues̀j ∈ C. Later we shall consider a
non-diagonal case associated with the simplest Jordan block.

Diagonal case.Now, we have

K = diag(k1, . . . , kn) R = diag(R1, . . . , Rn)

and
G = (G1, . . . , Gn)

t

with kj a square root of̀2
j −ερ2, Rj = ε(kj − j̀ )/ρ andGj(x, t) = Gj0 exp(2kj (x +2i j̀ t ))

with Gj0 = v1j ∈ C an arbitrary complex number. In this case we can choose generically
v2 as the vector(1, . . . , 1)t . For the components of the vectorsf we have

f1j (x, t) = Gj(x, t) + Rj

f2j (x, t) = RjGj(x, t) + ε.

The Darboux operatorϕ satisfiesLϕ +ϕL† = f1 ⊗f
†
1 + εf2 ⊗f

†
2 which can be written,

for non-vanishing̀ i + `∗
j , in matrix form as

ϕij = 1

`i + `∗
j

(f1if
∗
1j + εf2if

∗
2j )

= 1

`i + `∗
j

[(Gi + Ri)(Gj + Rj)
∗ + ε(RiGi + ε)(RjGj + ε)∗].

The new solutionp of NLS is

p = exp(−2iερ2t)

(
ρ + 2

∑n
j=1(RjGj + ε) detϕj

detϕ

)
whereϕj is the matrix obtained by replacing inϕ the j th row by (f ∗

11, . . . , f
∗
1n).
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Whenρ = 0 this corresponds, in the anomalous dispersion caseε = 1, to thenth bright
soliton solution [14, 6]. In that case

Rj = 0

Gj(x, t) = Gj0 exp(2 j̀ (x + 2i j̀ t ))

f1j = Gj

f2j = 1

ϕij = (ε + GiG
∗
j )/(`i + `∗

j )

and the formulae above forp are those for thenth bright soliton solution (ε = 1) as appear
in [6, (5.34), (5.37), (5.38)], see also the seminal paper [14].

Hence, the above solution can be considered in the focusing case as a deformation of
the bright soliton depending upon the parameterρ. For a more detailed understanding we
particularize to then = 1 case: the deformation of the 1-soliton.

Deformation of the bright 1-soliton: topological features.First we study the relation
`2 − k2 = ερ2 among the complex parameters`, k ∈ C. For a complex numberz we
shall denote byzR := Rez andzI = Im z its real and imaginary parts, respectively. Then,
the relation betweeǹ andk imply

kI = α`R `I = αkR

α2 =
√

(`2
R − `2

I − ερ2)2 + 4`2
I `

2
R − (`2

R − `2
I − ερ2)

2`2
R

.

Now, we write

G(x, t) = G0 exp(2iα`R(x − ut)) exp(2`I (x − vt)/α)

here we suppose thatkRkI 6= 0 and v = 2(`I + (kI /kR)`R) = 2(`I + α2`2
R/`I ) and

u = 2(`I − (kR/kI )`R) = 2(1 − 1/α2)`I . We have

ϕ = 1 + ε|R|2
2`R

(
ε + 4RR

1 + ε|R|2 ReG + |G|2
)

= α

α`R + `I

(
ε + 2ρ

(1 + α2)`R

|G0| cos(2α`R(x − ut) + δ) exp(2`I (x − vt)/α)

+|G0|2 exp(4`I (x − vt)/α

)
whereδ = Arg G0 is the argument ofG0. The amplitude reads

p = exp(−2iερ2t)(ρ + 2(G + R)∗(ε + GR)/ϕ).

The explicit expression ofϕ was already known [11], however, a relevant property of
such a solution is its topological nature, that apparently was missed in [11], and which we
shall discuss here. We assume thatkR > 0, then using the above formula and the asymptotic
behaviour ofG, after some computations one can show that

p ∼ −ρ exp(−2iρ2t)C(iα) x → −∞
p ∼ −ρ exp(−2iρ2t)C(−iα) x → ∞

where

C(x) := 1 + x

1 − x

is the Cayley transform ofx.
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The asymptotic value of the modulus of the amplitude is|p| ∼ ρ, x → ±∞, that
follows immediately from|p|2 = ρ2 + ε∂2

x ln ϕ. For the argument Arĝp the situation is
different, as Arg((1 + iα)/(1 − iα)) = 2 Arg(1 + iα) = 2 arctanα we conclude that

Arg p ∼ π − 2ρ2t + 2 arctanα =: φ− x → −∞
Arg p ∼ π − 2ρ2t − 2 arctanα =: φ+ x → ∞

and therefore the difference among the asymptotic arguments of the amplitude atx = −∞
andx = ∞ is for any t

1φ := φ+ − φ− = −4 arctanα.

We see that unlessk + ` ∈ R (R ∈ R) our solution is of a topological character. But
k2 − `2 = −ρ2 ∈ R so thatk + ` real impliesk − ` real as well, that isk and ` real.
Therefore, unless̀ ∈ R and`2 > ρ2, we are dealing with solutions of a topological nature
as the dark solitons of the NLS equation in the standard dispersion regime [9],ε = −1.

In the standard dispersion case,ε = −1, the solution is singular. But when deforming
the bright 1-soliton,ε = 1, we have a solitonic exponentially localized perturbation over
the background that moves with velocityv, and that amplitude is modulated by plane wave
with velocity u.

In figure 1 we plot a generic topological deformation of the bright 1-soliton of the
focusing NLS equation.

Figure 1. The topological deformation of the bright 1-soliton solution of the NLS for anomalous
dispersion. Our data is̀R = `I = ρ = |G0| = 1 andδ = 0. The plots are taken fort = 0 and
in a co-moving frame of velocity−v. The two first graphs show the real and imaginary parts
of the amplitude while the last one is the modulus of the amplitude. Observe the topological
character of the solution in the two first plots. As this solution evolves int a localized periodic
modulation appears aroundx = 0 with periodT = π/(α`R(u − v)).
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Homoclinic orbits. For ε = 1 andkR = 0 the behaviour of the solution is rather different
from the one described above. For the non-trivial case` ∈ R, 0 < `R < ρ, one

has α =
√

ρ2 − `2
R/`R. We introduceP := 2

√
ρ2 − `2

R in terms of which one writes

� = −P
√

4ρ2 − P 2 = −4`R

√
ρ2 − `2

R, sinφ = P/2ρ, and also|G0|`R/ρ = expγ so that

|G0|2 = A12 exp(2γ ) with A12 = ρ2/`2
R = sec2 φ. Then, the functionϕ reads

ϕ(x, t) = 1 + 2 exp(�t + γ ) cos(2Px + δ) + A12 exp(2�t + 2γ ).

The associated amplitudep corresponds to the single homoclinic orbit of the focusing NLS,
see formula (3.3.9) in [2] and references therein.

Obviously, a combination of homoclinic orbits can be constructed from then-
dimensional case discussed above by choosingj̀ I = 0 and 0< j̀R < ρ.

A simple Jordan block. We give the results corresponding to the simplest non-
diagonalizable operatorL. AssumeV = C2 and letL be

L =
(

` 1
0 `

)
a Jordan block with eigenvaluè∈ C. Let k ∈ C× be a non-vanishing root ofk2 = `2−ερ2

and define

η(x, t) := 2k(x + 2i`t)

P (x, t) := v11 + 2v12(`/kx + 2i(k + `2/k)t)

r := ε(k − `)

ρ

then the corresponding modulus of the amplitude (for`R 6= 0) is given by the expression

|p|2 = ρ2 + ∂2
x ln(|E|2 + εF 2)

with

E(x, t) := r/kv2
12 exp(2η) + (ε − r2)(v22P − v12v21) exp(η) − εr/kv2

22

F(x, t) := ((1 + ε|r|2)(|v12|2 exp(2ηR) + ε|v22|2)
+4rR Re(v∗

22v12 exp(iηI )) exp(ηR))/(2`R).

Herevij ∈ C are arbitrary constants.
This solution is constructed in terms of quasi-exponentials, not solely exponentials.

Therefore, it could be considered as a rational deformation of the topological deformation

of the bright soliton. If one takesL =
(

`1 1
0 `2

)
one obtains the same solution that

for L = diag(`1, `2) if `1 6= `2: for the focusing case the topological deformation is of
the bright 2-soliton solution. The limit̀1 → `2 is the one precisely giving our rational
deformation. But this statement is clear from the form of the operatorL; however, at the
level of the explicit expression of the solution it is not clear how it can be done. In any
case it could be considered as a rational degeneration of the topological deformation of the
bright 2-soliton solution (focusing case).
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4.1.2. Non-generic case.The limit commented in the previous paragraph can be taken to
be `1, `2 → √

ερ, which is not contained in the previous discussion because thenk = 0
and there is no square root available. We shall study this particular case here by using the
general form of the wavefunctions presented at the beginning of this section. Now,

L =
( √

ερ 1
0

√
ερ

)
.

We introduce the following notation

η(x, t)L = x + 2i
√

εt.

In the focusing case,ε = 1, the square modulus of the amplitude is

|p|2 = ρ2 + ∂2
x ln(|E|2 + F 2)

where

E := v11v22 − v12v21 + 2ηv12v22 − ρη2(v2
12 − v2

22) + (v12 + v22)
2Q

F(x, t) := |v12|2 + |v22|2 + 2ρx(|v12|2 − |v22|2) + 4ρt Im(v∗
12v22)

+2ρ2(x2 + 4ρ2t2)|v12 + v22|2

with Q(x, t) := 2(iρt − ρ2η3/3). Herevij ∈ C. This is a rational solution of the focusing
NLS equation.

4.2. Second method

We apply theorem 3 to the seed solution given in (11).
The equations defining the functiong are

∂xg + Lg + ρ exp(−2iερ2t)Ig∗ = 0

i∂tg − 2L2g − 2ρ exp(−2iερ2t)LIg∗ − ερ2g = 0

whose solution is

g(x, t) = exp(−iερ2t)h(x, t)

with (
h

h∗

)
= exp(−S)

(
v

v∗

)
.

Here S := HL is an operator inV ⊕ V , where the operatorsH and L can be written in
block form as

H(x, t) := diag(η, η∗)

L :=
(

L ρI

ρI ∗ L∗

)
with η(x, t) := x + 2iLt . Observe thatM := L2 = diag(L2 − ερ2, (L∗)2 − ερ2) so that

exp(S) =
∑
n>0

H2n

(2n)!
Mn +

∑
n>0

H2n+1

(2n + 1)!
MnL.

WhenL2 − ερ2 has an invertible square rootK the above expansion simplifies to give

h = exp(Kη)w+ + exp(−Kη)w



Darboux transformations for the nonlinear Schr¨odinger equations 7735

with

w+ = K−1[(K − L)v − ρIv∗]/2

w− = K−1[(K + L)v + ρIv∗]/2.
(12)

The relationLI + IL∗ = 0 impliesF(L)I = IF (−L∗) for any functionF defined by
a power series. For example,KI = IK∗ and exp(Kη)I = I exp(K∗η∗). The relations (12)
are equivalent to the following equations

(L ± K)w± + ρIw∗
± = 0.

If 3 is such that there exists an invertible operator, sayκ, solving κ2 = 32 − ερ2 a
similar approach leads to a wavefunctionγ = exp(−iερ2t)δ with

δ = ω+ exp(κξ) + ω− exp(−κξ)

whereξ := x − 2i3t , and theω’s are linear functionals characterized by

ω±(3 ∓ κ) + ρω∗
±J = 0.

As we did with the first method we shall factor out from the wavefunctions an
exponential contribution. Namely:

h =: exp(Kη)f

δ =: β exp(κξ)

and introduce

ϕ := exp(−Kη)8 exp(−κξ).

These definitions together with theorem 3 leads us to:

Proposition 6.Let ρ > 0 andL, 3, I, J ∈ L(V ) be linear operators on the complex linear
spaceV subject to

II ∗ + ε = 0 JJ ∗ + ε = 0

LI + IL∗ = 0 3∗J + J3 = 0

and such that there exists invertible operatorsK, κ with

K2 = L2 − ερ2 κ2 = 32 − ερ2.

Using the notation

η(x, t) := x + 2iLt

ξ(x, t) := x − 2i3t

we define the wavefunctions

f := w+ + exp(−2Kη)w+
β := ω+ + ω− exp(−2κξ)

with w± ∈ V andω± ∈ V ∗ satisfying

(L ± K)w± + ρIw∗
± = 0

ω±(3 ∓ κ) + ρω∗
±J = 0.

We introduce an invertible operator solution, sayϕ, of the following compatible equations

∂xϕ = If ∗ ⊗ β − f ⊗ β∗J − Kϕ − ϕκ

i∂tϕ = 2[(∂xϕ + Kϕ)3 − L(∂xϕ + ϕκ)] + ρ(If ∗ ⊗ β∗J − εf ⊗ β)

Lϕ + ϕ3 = If ∗ ⊗ β − f ⊗ β∗J
I ∗ϕ + ϕ∗J = 0.
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Then,

p = exp(−2iερ2t)(ρ + 2〈β, ϕ−1f 〉)
solves (7). Moreover,

|p|2 = ρ2 + ε∂2
x ln(detϕ)

Within this proposition one finds large families of solutions of the NLS equation. For
example the dark solitons [15] of the defocusing case appear in this scheme. This is a
relevant fact: for the first time the dark solitons have been derived with the use of Darboux
transformations.

The standard dispersion NLS corresponds toε = −1, then one can chooseI =
J = In, L = i diag(`1, . . . , `n) and 3 = i diag(λ1, . . . , λn), with −ρ < j̀ , λj < ρ,

K = diag(k1, . . . , kn) and κ = diag(κ1, . . . , κn) with kj =
√

ρ2 − `2
j and κj =

√
ρ2 − λ2

j .

If αj := arctan( j̀ /kj ) andθj := arctan(λj/κj ) we have

w+,j = ia+,j exp(−iαj/2) w−,j = a−,j exp(iαj/2)

ω+,j = b+,j exp(iθj /2) ω−,j = ib−,j exp(−iθj /2)

with a±,j , b±,j > 0, non-negative real numbers.
In the generic case we can factor out thew+,j and theω+,j . Hence iff = (f1, . . . , fn)

t

andβ = (β1, . . . , βn) are defined by

fj := 1 − iAj exp(−2kjηj + iαj )

βj := 1 + iBj exp(−2κj ξj − iθj )

whereηj = x − 2 j̀ t andξj = x + 2λj t andAj , Bj > 0, and the matrixϕ has as entries

ϕij = 1

`i + λj

Re((1 + iAi exp(−2kiηi − iαi))(1 + iBj exp(−2κj ξj + iθj )))

the function

p = exp(2iρ2t)(ρ + i〈β, ϕ−1f 〉)
is a solution of the defocusing NLS. This solution represents two sets ofn dark soliton with
velocities 4kj j̀ and−4κjλj , phasesπ − αj andπ − θj and centres related with(ln Aj)/Kj

and (ln Bj)/κj . The one dark soliton can be readily obtained whenn = 1 andB1 = 0.
Observe that the formulae for multiple dark solitons of [6] have a different appearance. Our
expressions, that give the same solutions, are closer to the standard formulae for the bright
solitons and its topological deformations.

We conclude remarking that the solutions discussed within the first method: bright
solitons and its topological and rational deformations can be reobtained here. For example

one can takeV = W ⊕ W with W = Cn and I = −J =
(

0 1
ε 0

)
, but we shall go no

further in this paper.
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